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Abstract—Nowadays, NoSQL databases become more and
more prevalent. As an important category in NoSQL databases,
Key-value store is widely used in a lot of data-centric ap-
plications, providing flexible and efficient performance. Key-
value pairs can be easily accessed given the keys. Recently, a
new Ethernet accessed disk drive called ”Kinetic Drive” was
invented. This drive can be directly accessed by applications
via IP address, without through a separate storage server.
Given the keys from the user, Kinetic Drive can perform key-
value pair operations by itself. It can reduce the management
complexity, especially in large-scale deployment in the data
center.

Given a set of Kinetic Drives in a data center, it is important
to manage the key-value pairs and store them in an organized
way. In this paper, we investigate how to allocate data on large-
scale key-value store system in the data center using Kinetic
Drives. We show the tradeoff among various design factors.
We invent key indexing schemes and allocate data on drives
accordingly. We propose approaches to migrate data among
drives. Performance evaluation shows that our approaches can
handle various key distributions well respectively in different
cases.

I. INTRODUCTION

Recent years, NoSQL databases [1][2] have been devel-
oped to provide more flexibility and better performance than
traditional relational databases. As one important NoSQL
database, key-value store [3] offers an easy but efficient data
storage and management scheme. In the key-value store,
a record of data consists of a key and a value. A key is
generated as an index to store, retrieve and delete the record.
The value is the actual data, which can be any type, e.g.,
graph, video, web pages, numbers. Users can access the data
given the keys. Without complicated operations (e.g.,join) or
foreign keys in the relational databases, key value store is
more convenient and flexible. Data can be easily accessed
with “put(key, value)”, “get(key)” and “delete(key)” oper-
ations. Nowadays, many existing key-value store systems
have been widely deployed for various applications, such as
Facebook Cassandra [4], Amazon Dynamo [5] and LinkedIn
Voldemort [6].

In the data storage industry, Object-based Storage Device
(OSD) has been introduced [7][8]. They can manage data as
objects, instead of traditional block storage. As an innovative
example of OSD and Active Disks [9][10][11], a new disk
drive called “Kinetic Drive” [12][13][14] was invented by
Seagate [15] a few years ago. This Kinetic Drive greatly
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Figure 1: Comparison of Traditional and Kinetic Storage
Stack [14]

changes the data access and management scheme for the disk
drives. Kinetic Drive provides a direct Ethernet connection
interface between host and drive. Users can directly access
the data via Ethernet connection with an IP address. With
these features, data access and management with Kinetic
Drives becomes easy and flexible, especially in the data
center environment. Traditionally, in the data center, there
is a separate storage server between applications running in
the (computing) server and disk drives. The storage server is
used to manage the disk drives and key-value pairs. Users’
requests have to go through this separate storage layer to ac-
cess the data in the drives. This data access and management
paradigm lead to extra overhead and complexity. Figure 1(a)
shows the traditional storage stack.

With the newly invented Kinetic Drives, however, in the
data center, this separate storage server can be removed to
reduce the management cost and provide more flexibility,
as shown in Figure 1(b). Kinetic Drive has a built-in
CPU, RAM and LevelDB [16] that can support key-value
operations. Given the keys, the Kinetic Drive can store,
update, retrieve and delete the data by itself. The applications
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Figure 2: Comparison of Write throughput between Kinetic
Drive and LevelDB server [17]

can directly issue users’ key-value requests to the Kinetic
Drives without the storage server’s help. In other words, each
Kinetic Drive can be viewed as a small “key-value store”
that can perform the key-value operations by itself as long
as the keys are provided. Hence, the separate storage server
can be removed. In [17], we conduct some experiments
to show the advantages of Kinetic Drives compared with
traditional architecture as shown in Figure 2 and Table I.
Also, with direct Ethernet connection and plug-and-play
feature, Kinetic Drives can be more scalable than traditional
drives. In Section 3, we discuss the advantages of Kinetic
Drives in details.

Obviously, it is important to manage key-value pairs on
large-scale key-value store system in the data center. The
built-in LevelDB in a Kinetic Drive is used to manage the
key-value pairs within that drive. Each Kinetic Drive uses
different conceptual levels to organize key-value pairs in that
drive with LevelDB. However, it is also critical to manage
a large number of Kinetic Drives in a data center in a
macro level. When users’ key-value requests are received,
the corresponding locations of the data should be found
out, i.e., which Kinetic Drive stores the key-value pairs
for users’ particular data. Therefore, an efficient indexing
scheme is needed to map the key-value pairs to the drives.
This indexing information is stored as a table in a metadata
server.

Given the keys from the users, the metadata server should
quickly locate the correct Kinetic Drives and forward the
users’ requests to them. In other words, the metadata server
cannot exhaustively search too many drives for key-value
pairs, instead, only as few drives as possible should be
involved given a key. Also, the indexing table cannot record
the mappings between every key-value pair and the corre-
sponding location due to the huge amount of data. A very
large indexing table costs too much storage space in the
metadata server. In addition, data migration amount among
drives (when some drives are full) and percentage of active
disks in the data center are important considerations as well.

There is a tradeoff among these above design factors. Hence,
a careful design of the indexing table and data allocation
scheme is necessary.

In this paper, we propose data allocation schemes for
large-scale key-value store system in the data center using
Kinetic Drives. We show the tradeoff of various design
factors. We design the indexing schemes to map key-value
pairs and allocate data to disk drives. We consider different
key distributions and propose data migration approaches.
With limited size of the indexing table, users’ requests can
be quickly redirected to the corresponding disk drives.

Our paper has the following contributions.

e We show the tradeoff among design factors, such as
data migration amount, average percentage of active
disks, number of involved disks and number of key
ranges per drive.

« We design indexing tables for the metadata server in the
data center to quickly find out the correct disk drives
given the users’ keys.

« We propose approaches to allocate and migrate key-
value pairs on Kinetic Drives for different key distribu-
tions, considering the tradeoff among design factors.

o Performance evaluation shows our indexing schemes
and data allocation approaches can handle various key
distributions well respectively in different cases.

The rest of the paper is organized as follows. In Section
2, we show the related work. We present the background
and motivation in section 3. We discuss our problem in
section 4 and propose our solution in section 5. Performance
evaluation is shown in section 6 and we conclude our paper
in section 7.

II. RELATED WORK

Some key-value store systems have been developed in
recent years, such as Facebook Cassandra [4], Amazon Dy-
namo [5] and LinkedIn Voldemort [6]. They provide large-
scale key-value storage for various applications. Different
from our design, these systems operate on traditional disk
drives which require separate storage server(s) or layer(s) to
manage the data. In addition, they ignore the key distribution
in the key-value pairs and assume the keys are usually
generated by a hash function providing a typically uniform
distribution among the keys. However, in our problem, in
order to efficiently support key range search and keep the
semantic meaning of the key, we generally assume keys
do not simply follow the uniform distribution. Hence, our
design consider the data allocation based on various key
distributions other than the simple uniform one.

Many peer-to-peer (P2P) systems [18][19][20][21][22]
provide key-value store for file sharing. Files can be trans-
ferred among distributed users across the Internet without
central server(s). In the P2P systems, data are typically
stored in key-value pairs. They can be looked up and routed
with other peers given the keys. Compared with our problem,



P2P systems are focused on file sharing in a distributed
environment. However, our design concentrates on the key-
value store in a data center to provide storage service for
users.

Object-based Storage Device (OSD) [7][8] has been in-
troduced to provide a novel way to manage data as objects.
Active Disks [9][10][11] are also innovate devices to process
data. With more powerful CPU and larger memory, Active
Disks can perform more functionalities beyond traditional
disk drives. As a special case of OSD and Active Disks,
Seagate recently announced the invention of Kinetic Drives
and provided some documents about the details [12][13][14].
In [17], we evaluate the performance of Kinetic Drives and
compare them with traditional hard disks. To the best of our
knowledge, our work in this paper is the first one to address
the data allocation issue in a large number of Kinetic Drives.

There are some other work about key-value store
[23][24][25][26][27]. They propose their research work in
different aspects of key-value store with various scenarios.
Different from these existing work, our paper considers the
features of Kinetic Drives and design the data allocation
scheme based on the unique advantages of this new kind of
disk drives.

III. BACKGROUND AND MOTIVATION
A. Preliminaries of Kinetic Drive

Kinetic Drives were recently invented by Seagate
[12][13][14]. Compared with traditional disk drives, Kinetic
Drives can be accessed by host via Ethernet connections
instead of SAS or PCI-e buses. Each drive provided by
Seagate in our performance testings [17] has a storage
capacity of 4TB and 2 Ethernet connections of 1Gb/s. Users
can directly access the Kinetic Drive via IP address with the
Ethernet cable.

In addition to the unique feature of direct Ethernet connec-
tion, the Kinetic Drive supports key-value operations with
the built-in LevelDB [16]. Given the key, the Kinetic Drive
can access the key-value pairs by itself. With LevelDB, it
can read, write, update an delete the data within the drive.
Users only need to send the key-value pairs to the drives via
IP addresses. The drives we test can support the key size up
to 4KB and the value size up to 1MB. The Kinetic Drives
support the following key-value operations with APIs.

o Put(key, value): Users can store the key-value pair with
the given key.

o Get(key): Users can retrieve the key-value pair with the
given key.

o GetKeyRange(keyl, key2): Users can retrieve the key-
value pairs in the key range between keyl and key?2.

o Delete(key): Users can delete the key-value pair with
the given key.

o GetNext(key): Users can retrieve the next key-value
pair based on the given key.

o GetPrevious(key): Users can retrieve the previous key-
value pair based on the given key.

B. Comparison with traditional solution

With these features and properties, Kinetic Drives are
very useful for the key-value store. In the key-value store
system with traditional disk drives, a separate storage server
(or layer) is needed for data management as shown in
Figure 1(a). Users’ requests from the applications are issued
by the (computing) server to the storage server(s). The
storage server(s) then connect to the disk drives. This process
has to go through the storage server which increases the
complexity. The storage server(s) become a separate storage
layer to manage the disk drives. The key-value operations are
run by the storage server(s) as well, because the traditional
disk drives are not able to autonomously perform the key-
value operations. In addition, the scalability is limited. The
storage server(s) can be a bottleneck for the data center,
because they have their limit to manage disk drives in large
scale.

With the Kinetic Drives, the data management becomes
easy and flexible. As shown in Figure 1(b), the new Kinetic
storage stack is simple. Users’ requests from the applications
can be directly issued to the disk drives in the data center,
without the storage server(s) as the intermediate layer. All
we need is a metadata server, which simply stores the key
indexing information and forwards the requests to correct
Kinetic Drives. Given the IP addresses of the Kinetic Drives,
disk drives can be directly accessed. This new stack can
remove the storage server(s), which greatly reduces the
complexity of data management and increases the scalability.
We can easily add more Kinetic Drives by simply connecting
Ethernet cables to them.

In large-scale deployment in the data center, the difference
between the architectures with traditional hard disks and
Kinetic Drives becomes more evident. In key-value store
system, LevelDB is widely used and we use it as an example.
As shown in Figure 3(a), the traditional architecture is
deployed with LevelDB or other key-value store systems on
a storage server with non-Kinetic hard disks. This storage
server runs LevelDB on it and manages those hard disks. The
storage server receives the users’ keys, searches the drives,
and makes a request to the drives to fetch the data. Each
hard disk is only a simple storage device which cannot run
key-value pair operations without the storage server (layer).
Hence, we can see that this traditional architecture shown in
Figure 3(a) is a single large key-value store system which
involves storage server and hard disks.

However, with Kinetic Drives, it becomes different. As
shown in Figure 3(b), in this new Kinetic key-value store
system architecture, each Kinetic Drive can be viewed as a
small “key-value store” that can perform the key-value pair
operations by itself. A Kinetic Drive has its own CPU, RAM,
built-in LevelDB system and Ethernet port with IP address.
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512MB LevelDB Server | Kinetic Drives
Throughput (MB/s) 14.6 22.45

Table I: Data Transfer Throughput between Two Drives

Those components make a Kinetic Drive an independent
small “key-value store”. After receiving users’ requests, the
metadata server can simply forward those requests such
as “Get(key)” and Put(key, value)” to the correct Kinetic
Drives via their IP addresses. Then these Kinetic Drives
that receive those requests can perform the key-value pair
operations by themselves. In other words, the Kinetic Drives
replace the work of traditional storage server to run the
key-value operations autonomously. As long as the keys are
provided, the Kinetic Drives can store, retrieve, update and
delete data within their drives, and return the results. Hence,
we can see that the new Kinetic architecture in Figure 3(b)
are multiple small key-value stores working together with
the metadata server.

C. Performance Comparison

To show the advantage of Kinetic Drives, we conduct
some experiments to compare the performance between
traditional architecture of LevelDB on storage server and
this new Kinetic architecture [17]. Two sets of experiments
are conducted. One is for the write throughput and the other
is for data transfer between drives.

In order to compare the write throughput between tradi-
tional and Kinetic architectures, we use one Kinetic Drive
and connect it to a server which sends key-value pairs.
We also install LevelDB on a storage server and attach
a traditional hard disk with the same amount of storage
capacity.

As discussed earlier, Figure 2 shows the performance
results of sequential write throughput. During the experi-
ments, we keep the number of key-value pairs the same, and
increase the value size. We can see that when the value size
is small, the traditional LevelDB server works better. This
is because the server has to send IP packets encapsulating
key-value pairs to the Kinetic Drive. Since the number of
key-value pairs is kept the same, even if for a very small
key-value pair, it still takes an entire IP packet. Hence, the
network overhead impacts the throughput when the data
amount is small.

As the value size grows, the data amount also increases.
We can see that in that case, Kinetic Drive performs better.
This is because the Kinetic Drive itself can run LevelDB. We
know that in LevelDB, data need to be frequently updated
with sorting and merging. These operations can take place in
Kinetic Drive. Once the data are stored in the Kinetic Drive
sent by the server, they do not need to be fetched by the
server for LevelDB operations or stored back to the drive.
This greatly brings a huge advantage. Therefore, we can also
see that the throughput grows as the value size increases for



Kinetic Drive.

However, traditional hard disk does not have built-in
LevelDB or support operations as Kinetic Drives does. For
traditional hard disk, the LevelDB server has to frequently
fetch the data from the disk, do some LevelDB operations
and send them back to the disk. Hence, the disk I/O becomes
a bottleneck so that the throughput drops when the data value
size gets larger.

We also compare the data transfer throughput in tradi-
tional and Kinetic solutions as shown in Table I []. For
Kinetic Drives, one Kinetic Drive issues P2P command to
transfer 512MB data in key-value pairs to another drive. For
traditional architecture, the LevelDB server reads 512MB
data in key-value pairs from one hard drive and write them
in another drive. As seen in the Table I, we can find that
the data transfer throughput for Kinetic Drives is greater
than traditional solution. For Kinetic Drives, the data can
be directly transferred between the drives without going
through the server. However, for traditional solution, the
storage server has to be the intermediate place for data
transfer between drives.

D. Scalability

From the above discussion, we can find out that Kinetic
Drives have their unique advantages. The results in Figure
2 and Table I only involve a few drives. In large-scale
deployment for the data center environment, the advantages
of Kinetic Drives become more evident because they can
scale well.

Since each Kinetic Drive can support key-value operations
by itself, it is easy to add more drives in the data center
without too much overhead on the metadata server. The
metadata server only needs to manage the data without doing
too much computing. With the plug-and-play feature and
built-in LevelDB, the key-value store system with Kinetic
Drives can be designed in larger scale. Many Kinetic Drives
can compute, store users’ data in parallel, which can further
improve the throughput for the entire system. However, in
the traditional architecture, the storage server can be the
bottleneck for the system. The limitation on the storage
server can impact the scalability, because every computing
operation is on the storage server.

Besides, for the data transfer among drives, we can also
find out the advantage of Kinetic Drives. Table I only
shows data transfer between two drives (and we already
see the improvement). In the large-scale environment, the
data transfer among drives can happen in parallel without
the server’s help. However, in the traditional architecture,
parallel data migration becomes difficult because of the
limitation of the storage server. The data transfer throughput
for the entire system with many Kinetic Drives can be
further improved compared with traditional solution with
non-kinetic drives. Hence, data migration among Kinetic
Drives is feasible.

In addition to the above advantages, another important
feature is that users can directly communicate with Kinetic
Drives via their IP addresses. In our key-value store system
design, given the key from the user, the metadata server
returns the IP address of the correct Kinetic Drive to the user.
Then the user can directly retrieve and store data from/to
the Kinetic Drive by “Get(key)” and “Put(key, value)” oper-
ations via the IP address. Hence, the value data in the key-
value pair does not need to go through the metadata server.
Since value size is usually larger than the key size, this direct
IP address access with Kinetic Drive can greatly decrease
the traffic amount to the metadata server, which can further
reduce the burden and make the system more scalable. In the
traditional solution, every user’s requests have to go through
the storage server, which can be a bottleneck for the entire
system.

E. Motivation

With huge amount of data stored in the data center, many
Kinetic Drives are needed. In other words, one Kinetic Drive
with TBs of storage capacity is obviously not sufficient.
From our previous discussion, we can see that in the
data center, the metadata server sends the users’ key-value
requests to the correct Kinetic Drives. For example, if a
user wants to retrieve the key-value pair with the “key =
38293924”, the metadata server needs to know where this
key-value pair stores (i.e., which Kinetic Drive has it) first,
because there are so many Kinetic Drives in total. Hence, it
is important for the metadata server to manage these Kinetic
Drives and have a clear view of the locations of key-value
pairs. Given a key, the metadata server should quickly find
out which Kinetic Drive has this key-value pair if it is a
”Get(key)” operation. For the “Put(key, value)” operation,
the metadata server also needs to know where this key-value
pair should be stored.

Obviously, the simplest way is that the metadata server
send users’ requests to all the Kinetic Drives for data re-
trieval. Then all the drives will search for the data. However,
this naive “exhaustive search” for all drives is absolutely
inefficient and has huge costs. Many Kinetic Drives have to
do a lot of unnecessary searches for the data, because at the
end, only one or a few drives have the data, or even no drive
stores them at all. Huge amount of resources are wasted in
this naive approach. Hence, we need to design an indexing
table for the metadata server to map the key-value pairs to
the drives, so that only as few drives as possible are involved
for data search.

On the other hand, the indexing table should not be
too large. An extreme approach is that the indexing table
includes the mappings for every possible key-value pair
to drives. For example, the key-value pair with “key =
0000...00” is stored in drive 0, and another key-value pair
with "key = 1111...11” is stored in drive 999. In this way,
the indexing table would become extremely large. Since the



Kinetic Drive supports the key size up to 4KB, there would
be 24K B (= 24096+8) records for all the possible key-value
pairs in the indexing table, which is not practical or cannot
be stored in the metadata server. Hence, when we design
the indexing table, we should limit its size and make sure it
does not bring too much storage overhead for the metadata
server. Therefore, a careful design for the efficient indexing
table is necessary.

1V. PROBLEM
A. Our Scenario

In this paper, we consider the following scenario. In the
data center environment supporting key-value store system,
there are metadata server(s), data storage (Kinetic Drives)
and outside users as shown in Figure 3. The metadata
server(s) are connected to the Internet and have the key
indexing table. The data storage consists of a large amount
of Kinetic Drives. The outside users retrieve and store data
in key-value pairs from/to the data center.

In this key-value store system, users can store
(’Put(key, value)”), retrieve (“Get(key)”), range query
(’GetKeyRange(key1, key2)”) and delete (“delete(key)”) da-
ta. Also, the data can be updated by storing the new key-
value pair and deleting the old one.

When a user wants to store a key-value pair, the following
process happens as shown in Figure 3(a). The user provides
the key first (How to generate the key depends on the user,
which is beyond this paper’s scope.) Then the user sends
the key to the metadata server(s) via the Internet. (In the
real system, there should be multiple metadata servers. In
this paper, we simply assume these metadata servers can
coordinate and the key indexing table can be synchronized
to be updated.) The metadata server(s) look up the key
indexing table to find out which Kinetic Drive should store
this key-value pair, and return this Kinetic Drive’s IP address
to the user. After that, the user directly connects to that
Kinetic Drive via its IP address and issues “Put(key, value)”
operation to store the key-value pair.

If a user retrieves a key-value pair, it is similar to the
above process as shown in Figure 3(b). The user sends the
key to the metadata server to get the IP address of the Kinetic
Drive that has the data. Then it issues ’Get(key)” operation.
If a range query happens, the user may need to ask more
than one Kinetic Drives to get the results. The data deletion
works similarly in this way.

Since the key indexing table records the mappings be-
tween key-value pairs in ranges and the drives (i.e., which
range of keys are stored in which drives. The details are
explained in the next section.), the metadata server can do
some quick preliminary search for data retrieve requests,
in the case that there are no such key-value pairs for the
given key in the current covered key ranges. If this happens,
it means the data is definitely not in any drive. Then the
metadata server can just return “Not Found” to the user so

&8s

User

B

User

Internet

Metadata
Server

indexin;

é‘éééééé T

Kinetic Drives

(a) User storing the data

&8s

User

Metadata
Server

indexing

é‘éééééé T

Kinetic Drives

(b) User retrieving the data

Figure 4: Key-value store system with Kinetic Drives

that the user does not need to ask the Kinetic Drives again.
Hence, the further unnecessary query for the drives can be
avoided to reduce the waste of resources.

B. Research Issues and Design Challenges

There are several research issues in our design for the
key indexing table and data allocation on Kinetic Drives as
follows.

1) What does the key indexing table look like? In the
key indexing table, we should map the key-value pairs
to the Kinetic Drives. What should be in the indexing



table? The design needs to answer these questions.

2) In the real applications, key-value pairs are contin-
uously coming to the data center. In other words,
key-value pairs are dynamically generated. There-
fore, the key distribution will change accordingly. In
most cases, it is not realistic to assume some pre-
determined distributions. This dynamic change of key
distribution should be handled. Further adjustment of
the indexing table is needed so that data have to
migrate among the drives.

3) Although data migration among the drives is unavoid-
able, it brings cost. It takes time to move the data
and has impact on drives’ performance. Hence, data
migration amount is an important performance
metric for the system. In our design, we should
reduce that.

4) In the key indexing table, the number of key ranges
for drives is another important design metric. Ideally,
each drive is responsible for only one key range,
which is simple but efficient for data management,
especially for key range search. However, because of
the data migration, some drives may be associated with
multiple key ranges in the key indexing table. In our
design, we should consider reducing the number of
key ranges for drives.

Considering the real scenario, we also have the following
design challenges.

1) Since key-value pairs are dynamically coming to
the system, generally, keys are not uniformly dis-
tributed. For example, keys starting with ”000” may
be more than those starting with ”011”. Also, users
are distributed worldwide. Each user follows its own
scheme to generate the keys, so that it is generally
unrealistic to assume keys follow some known formats
or distributions. Hence, we cannot easily assign the
key-value pairs based on some static criteria of key
patterns.

2) When a user requests data retrieval, the metadata
server should not return too many Kinetic Drives’
IP addresses to the user. In other words, the number
of involved drives for a "Get(key)” operation should be
limited. An extreme case is that every drive searches
for the data. This exhaustive search is absolutely not
acceptable. If too many drives participate in unnec-
essary searches for key-value pairs, huge amount of
resources are wasted.

3) The key indexing table should not be too large as well.
As discussed in the motivation, it is not realistic to
record the mappings between every possible key-value
pair to the drive, although this way is very accurate.
Hence, the size of the key indexing table should
be limited and does not bring too much storage
overhead for the metadata server.

4) In addition to the above challenges, percentage of
active disks is another important design factor. When
the system receives data, it is better to keep data
in as few drives as possible to full utilize the disk
resources. In other words, we should consider to lower
the percentage of active disks in the system).

C. Design Tradeoff and Goal

In summary, we can see that there is a tradeoff among
four different design factors. (1) data migration amount; (2)
percentage of active disks; (3) the number of searched disks
for a request; (4) the number of key ranges per drive. In our
design, we should consider this tradeoff.

Our design goal is as follows. Given a set of N Kinetic
Drives in the data center with the metadata server(s), users
use the data center as the key-value store system. Data re-
trieval (”Get(key)”), range query ("Get(keyl, key2)”), store
(’Put(key, value)”) and delete ("delete(key)”) operations are
supported. Our goal is to design a key indexing scheme to
store key-value pairs among N Kinetic Drives, so that the
following requirement should be satisfied.

o It can handle dynamic generated key-value pairs stored
in the system.

o Limited number of drives should be involved for a given
key.

o The indexing table should be in small scale so that it
can be stored in the metadata server(s).

o It should avoid too much data migration among drives.

o Drives should cover as few key ranges as possible.

o The system should lower the percentage of active disks.

V. OUR DESIGN
A. Assumptions

In this paper, we have the following reasonable assump-
tions.

1) We assume the key-value pairs generated by users are
received by the system dynamically. In other words,
we generally do not know what the upcoming key-
value pairs are, so that future key distribution is
unknown.

2) We can simply assume all the Kinetic Drives are
uniform and have the same storage capacity.

3) To simply the problem, we assume there is only
one synchronized key indexing table in the metadata
server. In reality, there may be multiple tables dis-
tributed in different metadata servers. However, in our
problem, the synchronization of these tables is not an
issue.

4) We assume the total Kinetic Drives can store all the
key-value pairs received. If current drives do not have
enough storage space, more drives can be added and
our approach can also apply.



Key range IP address of the drive
all Os to 001... 138.32.211.4
010... to 011... 138.32.211.5
100... to 101... 138.32.211.6

Table II: An example of key indexing table

B. Key Indexing Table

The essential design is the key indexing table. This table
maps the key-value pairs to the drives. As discussed in the
previous section, given the key in the key-value pair, the
metadata server quickly looks up the key indexing table and
find out where this key-value pair is (or will be stored), then
the IP address of that drive will be returned to the user.

The key indexing table should be designed in a simple and
efficient way. This table should not require too much storage
space. Also, the search for drives should be performed
quickly. In our design, we use the key range to map the
key-value pairs to the drives, explained as follows.

A key is essentially a sequence of multiple bits, consisting
of 0 and 1. In our approach, We allocate the key-value pairs
to the drives based on the key ranges.

There are two different ways to design the key indexing
table, non-overlapped (disjoint) key ranges or overlapped
(joint) key ranges in drives. Non-overlapped key ranges
mean that each drive store key-value pairs with different
non-overlapped key ranges. In other words, given a key,
there is only one drive that can potentially have that key-
value pair (if we ignore multiple data copies issue here). On
the other hand, overlapped key ranges mean that different
drives can cover the key-value pairs with overlapped key
ranges. Hence, give a key, multiple drives need to be
searched to find that key-value pair.

In our design, we generally consider the non-overlapped
case. In this way, the metadata server only returns one
Kinetic Drive’s IP address to the user given a key. The
user therefore, only needs to contact one drive. If the
overlapped case is adopted, however, multiple drives can
be searched because it is possible that the given key falls
in the overlapped key range among different drives. Hence,
the valuable disk resources and bandwidth would be wasted.
However, the overlapped method can delay and reduce the
data migration amount when one drive is full. We will
discuss this later in this paper and also design an approach
allowing overlapped key ranges to show the tradeoff.

Here is an example of the key indexing table shown in
Table 1, assuming the maximum number of bits in the key is
10. From this example, we can see that the drive with the IP
address 7138.32.211.4” is used to store the key-value pairs
with key range from all Os to 001...(keys starting with 001).
Hence, if a key falls into this range, the key-value pair will
be stored and retrieved in that drive. In the next paragraphs,
we will see that a drive can be used to store key-value pairs

in multiple key ranges.

C. Initial Assignment and Further Adjustment

At the beginning, all drives are empty. As the key-value
pairs come into the system, we need to assign those data to
the drives. Hence, certain mappings between the key-value
pairs to the drives need to be created to allocate the data
accordingly, even before the system receives any key-value
pairs. We call this process as “initial assignment” because
the initial mappings are created.

As time goes on, more and more key-value pairs will be
stored in the drives. Since the key-value pairs are dynami-
cally received and the key distribution is generally unknown,
the initial assignment will not be applicable for future data
in later stage. Some drives may have more data while others
may have less data according to the initial assignment. At
certain time, some drives will become full and cannot store
any new data. For example, based on Table 1, if the data in
the key range (all Os to 001...) become more and more as
time goes on, the drive ”138.32.211.4” will be full at some
moment. Then this drive cannot store the data in this range
any more. Hence, we need to further adjust the mappings
and update the key indexing table.

Intuitively, when a drive is full, we need to migrate some
data to another drive, freeing some storage space for new
upcoming key-value pairs. (Generally, we do not simply
redirect future data in this full drive’s key range to another
drive. This would cause multiple drives have overlapped key
ranges. We have a separate approach allowing overlapped
key ranges.) In that case, the key indexing needs to be split
and updated. For example, if the drive "138.32.211.4” is
full, the index “all Os to 001...” will be split into two parts,
e.g., ~all Os to 0010...” and ”0011...”. One of these two new
key index range will point to a new drive and key-value
pairs within this range will be migrated to that new drive
accordingly. Table 2 shows the new possible key indexing
table after the adjustment. The data within the key range
”0011...” are now stored in drive ”138.32.211.7”. Hence, we
can see that it is necessary to further update the key indexing
table and migrate data.

The initial assignment and further adjustment are highly
related. We should consider the further adjustment when we
design the initial assignment scheme. A good initial assign-
ment can reduce the data migration amount for the further
adjustment later and the number of key ranges for each
drive. In the follow subsection, we discuss the importance
of the initial assignment and show our approaches. Also, we
consider the percentage of active disks as well.

D. A ”OneToAll” Approach

To better explain our approaches, we denote all the drives
with the number 0, 1, 2, 3, .... In this "OneToAll” approach,
all the key-value pairs are assigned to only drive O initially.
In that case, the drive O stores the data in any key range



Key range IP address of the drive
all Os to 0010... 138.32.211.4
0011... 138.32.211.7
010... to 011... 138.32.211.5
100... to 101... 138.32.211.6

Table III: An example of the new key indexing table after
further adjustment

(i.e., all Os to all 1Is), as shown below. Now there is only
one key index entry in the table.

all Os to all 1s — drive 0

As time goes on, the drive 0 will be full. Then we move
half of the data from drive O to drive 1 and split the key
index into two drives. Those half of the data are decided
based on the ascending order of the keys. In other words, we
separate the data into two parts with the same amount. One
part of key-value pairs are those with smaller keys, whereas
the other part of data are with greater keys. (Without losing
generality, we keep the first half of data in drive 0 and move
the other half to drive 1).

For Kinetic Drives, it is technically feasible to separate
the data into two parts with smaller and greater keys. The
Kinetic Drives support an API “GetPrevious(key)” to get
the previous key-value pair based on the current given key.
Hence, with the known ending key, the drive can easily find
half of the data with greater keys using this APIL

After that, the key index will be split into two entries, such
as (This key range cutoff is only an example. The actual
separation depends on the the key distribution and the value
size.)

0... — drive 0
1... — drive 1

In this case, a new key-value pair with its key starting
from ”0” will be stored in drive 0. Hence, data will be put
into two drives. With more and more data come in, at some
moment, either drive O or drive 1 will be full. For example,
if drive 1 is full, we split the key index for drive 1, move
half of the data from drive 1 to drive 2, and update the table.
Then the key indexing table may look like as follows.

0... — drive 0
10... — drive 1
11... — drive 2

After that, a new key-value pair will be stored in one
of these 3 drives based on its key. We follow the same
way for the subsequent upcoming key-value pairs. From the
discussion, we can see that the essential idea of this approach
is that, any upcoming new key-value pair will be stored in
one of the current occupied drive. If one drive is full, then
half of the data is moved to a new empty drive, and the key
indexing is split and updated. Hence, the system stores the

data starting with only one drive and gradually extend to all
drives.

For this “OneToAll” approach, since data are initially
assigned to only one drive, this approach leads to a lot
of unnecessary data movement in some circumstances. If
the key distribution of the entire key-value pairs is roughly
uniform, this approach is not a good choice. Here, when we
say “uniform” distribution, we mean that there are roughly
the same amount of key-value pair data in each prefix of
the key. For example, in each prefix 0000000, ”0000001”,
00000107, ... , 11111117, the data amount are roughly
the same. In this scenario, this ”OneToAll” approach still
migrates data from one drive to another, without taking
advantage of this uniform distribution.

However, on the other hand, this "OneToAll” approach
yields a small percentage of active disks. The active and
occupied disk drives are kept as few as possible. If the
workload comes lightly and the disk bandwidth can sustain
the users’ requests, this approach actually is a good choice
for lowering the percentage of active disks.

Another advantage of this approach is that, it can guaran-
tee each drive covers data in only one key range. In other
words, there is only one key range for each drive. This
property can keep drives from storing data in more than
one consecutive key range. It can greatly reduce the data
management complexity. The more key ranges are covered
in one drive, the more complexity it will bring. Also, it
will cause the indexing table to be larger. Reducing number
of key ranges in drives is especially helpful for key range
search. Given a key range search request, it is better to
involve as few drives as possible for searching data. If every
drive stores data in only one key range as this "OneToAll”
approach does, it is ideal for key range query in terms of
the number of included disk drives.

In addition, the approach is also scalable for adding more
disk drives. Since data are migrated from one drive to
another, it still applies when more drives are added to the
system if current disk drives are not enough. There is no
change for this approach.

E. Two Additional Approaches

1) Approach 1: ”Prefix-All” approach: From our previ-
ous discussion, we can see that data migration is inevitable.
It takes network bandwidth and drives’ resources. Hence, a
good key indexing approach should reduce the data migra-
tion and consider the tradeoff among different factors. Our
first additional approach “Prefix-All” works as follows.

Initial Assignment: Instead of filling the drives one by
one with data, we assign the key-value pairs initially based
on the prefixes of the keys. Given a key, we check the prefix
of the key and decide which drive this key-value pair should
be stored. The length of the prefix is determined by the
number of drives in the data center. If there are IV drives in
total, we use the first logo IV bits of the key as the prefix to



decide the location of the data. As an example, we suppose
there are 128 Kinetic Drives, then we use the first 7 bits of
the key as the prefix. Hence, the initial key indexing table
is as follows.

0000000... — drive 0
0000001... —> drive 1
0000010... — drive 2
0000011... —> drive 3
1111110... — drive 126
1111111... — drive 127

In the above table, “0000000...” means the key starting
with ”0000000”. We can see that at the initial assignment
stage of this approach, based on the prefixes of the keys, the
data are separated into all the drives in advance. Different
from the previous case, the key indexing table is predeter-
mined at the first place, whereas the "OneToAll” approach
gradually expands the key indexing table. In this approach,
we just assign the key-value pair to the corresponding drive
based on the first some bits.

Data Migration: Later, when a drive becomes full, we
will move part of the data in that drive out to another drive.
Here, we use a greedy way to pick up the destination drive.
We select the drive with the maximum free storage space.
Then, we fill the chosen destination drive with data of half
of its free storage space, from the full drive. (We can move
the data with greater keys out.) After that, we split the key
index and update the table. (If we cannot find a destination
drive that has at least half of its storage capacity as free
storage space, it is the time to add more new empty drives.)
In the above example, if drive O is full and drive 126 has the
maximum free storage space, then the updated key indexing
table may be as follows.

00000000... —» drive 0
0000001... —> drive 1
0000010... — drive 2
0000011... — drive 3
1111110... and 00000001... — drive 126
1111111... — drive 127

Since this approach assign the data based on the key
prefix, it can deal with the keys in uniform distribution
well. With predetermined data allocation, key-value pairs
can directly go to the corresponding drives without too much
data migration, since data are roughly the same for each
prefix. Hence, the data migration can be reduced. Also, this
approach can make sure each drive has at most two different
key ranges. However, the percentage of active disks in this
“Prefix-All” approach can be very high. All drives can be
potentially accessed and active at the beginning stage, since
each drive is responsible for a certain key range.

Although this approach can also apply when more new

empty drives are added, it is less flexible and scalable than
”OneToAll” and the following “Prefix-Half” approach. All
the drives are assigned with key ranges in advance and
potentially used at the beginning. When some new drives are
added, some drives may already have data in two different
key ranges due to the data migration.

2) Approach 2: ”Prefix-Half” approach: In the real sce-
nario, all the key-value pairs are dynamically and continu-
ously generated by users. Hence, the key-value store system
generally has no prior knowledge about the future key distri-
bution. The "Prefix-All” approach handles the uniform keys
distribution perfectly in terms of data migration. However,
in reality, the key distributions are not likely to be extremely
uniform. Also, in order to consider the tradeoff between
percentage of active disks and data migration amount, we
have our "Prefix-Half” approach as follows.

Initial Assignment: The “OneToAll” approach uses only
one drive as the initial assignment location, whereas the
“Prefix-All” approach uses all the drives. In this “Prefix-
Half” approach, in order to take care of different possible
key distributions, we use half of the entire drives to initially
store the data. In other words, half of the drives are spare
drives and empty initially. They are not used to store data
at the beginning.

For half of drives that are used for initial data assignment,
we use the key prefix to decide the location of the data,
which is similar to the “Prefix-All” approach. If there are [NV
drives in total, we use the first lOQQ% bits of the key as the
prefix to locate data. For example, if we have 128 drives,
only 64 drives are used for data allocation at the beginning
and the first 6 bits of the key are the indexes. The key-value
pair whose the key starting with ”000000” is stored in drive
0, as shown below.

000000... —» drive 0
000001... —» drive 1
000010... —» drive 2
000011... —» drive 3
111110... — drive 62
111111... — drive 63

Data Migration: As time goes on, more and more key-
value pairs are received and stored in the drives. At some
moment, one of the drive becomes full and cannot store
new data anymore. When this happens, we move half of the
data from this drive to an empty spare drive and split the
key index into two parts. This is similar as the "OneToAll”
approach shown in Section 5.4. We can keep the half of data
with smaller keys in the drive and move the other half of
data out.

For example, based on the previous key indexing table, if
drive O is full. We can move half of the data with greater
keys to drive 64, which is initially empty. Then the new key
indexing table can be updated as follows.



0000000... — drive 0
000001... — drive 1
000010... —» drive 2
000011... —» drive 3
111110... — drive 62
111111... — drive 63
0000001... — drive 64

Further Merging: From the previous discussion, we
know that the initial empty spare drives are filled with data
one by one. Later, at some moment, all the disk drives are
occupied by data, i.e., no empty drives exist any more. When
this happens and we find one of drives becomes full again,
we then do the following further data merging.

Since the key distribution is not likely to be extremely
uniform, some drives have more data while others have less
data. In order to store upcoming key-value pairs, we further
merge data among drives to create empty drives. If an empty
drive can be created after some data merging, then we can
use this newly created empty drive to store the upcoming
key-value pairs, (i.e., we move half of the data with greater
keys from the full drive to this newly created empty drive,
and update the key indexing table.)

Here is how we merge data and create empty drives. We
create the empty drives one by one and on demand. When
all the drives are occupied with data and the current drive
is full, we then create an empty drive. In order to do that,
we select two drives with least amount of data whose key
ranges are adjacent to each other. This adjacency means that
those data in these two chosen drives can be merged as a
consecutive key range (i.e., the start key of one key range
is next to the end key of the other). If the data in these
two drives can be merged into one drive, we do that. Then
we merge the key index and update the index table as well.
After that, an empty drive is created.

With this further data merging method, we not only create
an empty drive, but also make sure data in two adjacent key
ranges will be merged, so that after merging, data are still
in one key range in the drive.

For example, based on the previous key indexing table, if
drive 2 and 3 have least amount of data, we merge and
migrate them into one drive, e.g., drive 3. Then drive 2
becomes an empty drive and can be used to store upcoming
key-value pairs. After that, the new key indexing table is as
follows.

0000000... — drive 0
000001... — drive 1
00001... — drive 3
111110... — drive 62
111111... — drive 63

0000001... — drive 64

In our scenario, we assume that the total Kinetic Drives
have enough storage capacity to store all the key-value pairs.
If later we cannot find an destination drive to store new data,
we believe the system needs to add more drives, since the
majority of the storage capacity has been used already. After
new empty drives are added, we can then use our method
again to store more data. Hence, this approach is also a
scalable one.

Compared with the “Prefix-All” approach, with small
amount of extra data migration caused by further merging,
more drives store data with consecutive key ranges. Also,
we can see that this approach can reduce the percentage
of active disks. At the beginning, only half of the drives are
potentially active and involved for data access. Then the sys-
tem gradually expands its active disk set on demand. Hence,
this approach considers the tradeoff between percentage of
active disks and data migration amount. It is in the middle
of ”OneToAll” and "Prefix-All” approaches and provides a
flexible data allocation scheme.

FE. 7 Prefix-Half-2Drives” approach

In the previous section, we discuss the tradeoff among the
number of involved disks for a request and data migration.
In order to reduce the data migration amount, we can design
an approach that allows disks have overlapped key ranges.
When a disk A becomes full, instead of immediately split
the index and move part of the data out, we can redirect
future data in disk A’s key range to another disk B. In that
case, at this moment, data migration can be delayed or even
avoided. However, disk B’s key ranges are now extended
and have an overlap with A.

Of course, we need to consider the performance of
processing a key-value request. Given a key, the system
should not search too many drives for data. If a lot drives
have overlapped key ranges, the number of involved disks
searched by the system for data could become huge, which
greatly impacts the performance and wastes the disk re-
sources. Hence, in our approach, we limit the number of
drives searched for data up to 2. In other words, given a
key, the system searches at most two drives for data.

We design this approach based on the “Prefix-Half”
approach. (In the “Prefix-All” approach, there are no spare
drives at the beginning.) We take advantage of the spare
empty drives. Here is how it works.

Similar to the “Prefix-Half” approach, the first half of the
drives are assigned with predetermined key ranges and the
other half drives are spare empty drives. In addition, the first
half drives are grouped in pairs. If disk A is in pair with B,
we call A and B are neighbor drives. When we group the
neighbor drives in pairs, we consider the key ranges covered
by them. Two disks are neighbors only when they cover
adjacent key ranges. Each drive only has one neighbor drive
in our case, (since we limit the number of drives searched
for any data up to 2.) When the drive A is full and data



in A’s key range is coming, we first consider its neighbor
drive B as the destination. If its neighbor drive B still has
storage capacity for data, we store the new data (which was
supposed to store in A) in drive B, and update the indexing
table for drive B. For example, if the original indexing table
is as follows, (drive 0 and 1, 2 and 3, 62 and 63 are grouped
as neighbors.)

000000... — drive 0

000001... — drive 1

000010... — drive 2

000011... — drive 3

111110... — drive 62

111111... — drive 63
then drive O becomes full. In this approach, we redirect
future data in 000000... to drive 1 first, if drive 1 still has
storage space. Hence, at some moment, the indexing table
may look like this. We can see that drive 0 and drive 1 now
have an overlapped key range 0000001..., and any data in
this range will be searched in both drive O and 1.

000000... — drive 0
0000001... and 000001... — drive 1

000010... — drive 2

000011... — drive 3

111110... — drive 62

111111... — drive 63

As data continue comes, drive B may become full later,
then we migrate data. In order to do that, we bring one of the
spare empty disk drive C and reorganize data among disk A,
B and C. We balance the data among these three drives and
each drive stores data with 2/3 of its storage capacity. (We
need to balance data amount of two full drives among three
drives.) When we do that, each drive is assigned data with
one consecutive key range and three drives cover the entire
original key ranges of A and B one after one, (e.g., Drive A,
B and C can store the first, second and last 1/3 of the key
ranges respectively.) This way can make sure after the data
migration, these three drives have no overlapped key range
and yield a good data occupied rate of 2/3.
In the above example, after the data migration, the index-

ing table may look as follows.

0000000... — drive 0
000001... —» drive 1
000010... — drive 2
000011... — drive 3
111110... — drive 62
111111... — drive 63
0000001... — drive 64

With data redirection allowing overlapped key ranges, we

can see that data migration can be delayed or even avoided
at some cases. If all the spare empty drives are occupied,
new drives need to be added in the system.

G. A Special Case: How to handle roughly known key
distributions (” Prefix-Half-known” approach)

In our previous approaches, we assume that the system
has no prior knowledge of the key distributions. In some
cases, however, we may know some rough key distributions
in advance. In other words, we may have a prior knowledge
about some general key distributions. This information is
only rough and not very accurate, but can reflect the general
distributions of keys. Suppose there are 256 Kinetic Drives
in the data center, the granularity of this known key distri-
bution is not precise enough in every single drive (i.e., we
do not know the percentages of data in every one of the 256
key ranges). Instead, we may only know approximately the
percentages of data in each of 16 key ranges. (Each of these
16 key ranges are obviously bigger than each of 256 key
ranges.) For example, the system may only roughly know the
percentages of data amount in key range of 0000..., 0001...,
0010..., ..., 1111... respectively. However, in the key range
0000..., it still does not have a knowledge of percentages
of data distribution in its sub-ranges. In other words, this
prior knowledge is only to the level of 16 bigger key ranges
generally.

Here, we design an approach that can take advantage of
this general and rough known knowledge of key distribu-
tions. We propose a solution based on the “Prefix-Half”
approach with changes. It works as follows. Suppose we
have N Kinetic Drives and M key ranges (N >> M). We
know that each range R;(i = 1,2, ..., M) has a percentage
P; of total data. In the “Prefix-Half” approach, we equally
divide the entire key range with the number of half of
the drives (IN/2) and assign each drive a predetermined
key range. However, in this approach, since we know the
percentages P; for each R;, we use the following way.

We still keep half of the drives as empty spare drives
and divide the rest of them into M parts. The number of
drives in each part U;(i = 1,2, ..., M) is proportional to the
percentage P;. Each part of drives U; is used to store data
in the corresponding key range R; initially. Within U;, we
further equally divide the key range R; into |U;| sub-ranges,
and each drive in U; is responsible for storing data in each
sub-range initially.

The rest of this approach is similar to the “Prefix-Half”
approach. When a drive is full, data in that drive are split
into two parts and one part is moved out to an empty spare
drive. When all the drives are filled with data, we further
merge data among the drives and update the indexing table
as shown in Section 5.5.

From the above discussion, we can see that, with some
prior rough knowledge of key distribution, drives can initial-
ly store data with different key coverage ranges based on the



various percentages. Hence, a more accurate data allocation
approach is proposed.

VI. PERFORMANCE EVALUATION
A. Experiment Setup

To evaluate the performance of our approaches, we sim-
ulate a data center environment with 256 Kinetic Drives.
Each drive has the storage capacity of 2TB. We generate
key-value pairs in different key distributions as shown in
the follow paragraphs. Each key-value pair is about 1MB
size. The total key-value pairs generated and stored in the
data center is about half of the entire storage space of the
data center.

B. Performance Comparison

We use the total data migration amount and the average
percentage of active disks (i.e., disks occupied with data), as
the performance metrics. We compare our five approaches.
For each key distribution, we keep the same amount of key-
value pairs.

1) Lightly Unbalanced Distribution: From our previous
discussion, we can see that the “Prefix-All” approach can
handle uniform key distribution well. Ideally, if the keys are
uniformly distributed for all the key ranges, there are zero
data migration. Key-value pairs can directly be stored in
their predetermined drives. Also, in this ideal uniform case,
every drive stores data only in one consecutive key range,
which is perfect.

However, in reality, this perfect uniform key distribu-
tion does not happen. There are more data in some key
ranges, whereas there are less data in other key ranges.
The difference may be not very large. In order to reflect
this lightly unbalanced key distribution among different key
ranges, we generate the data with their keys in normal
distribution. Among these 256 key ranges, some of them
have more data while others have less data. Overall, the data
amount among all the key ranges roughly follows a rough
normal distribution with its average of 1GB. We generate
the traces with different standard deviations to compare the
performance.

This type of traces can simulate and reflect some cases
that there are different data amount in different key ranges.
It is a typical case that some key ranges are popular while
others are not. With the normal distribution, the lightly
unbalanced data amount can be captured, but it does not
fully reflect some highly skewed key distribution. In other
words, we use the normal distribution to reflect the various
popularities and unbalance in some moderate degree. Al-
though there are some difference of data amount among the
key ranges, the overall variance does not highly differ.

Figure 5 shows the results. We vary the standard deviation
of data among key ranges in 0.41TB, 0.58TB, 0.74TB and
0.81TB respectively. In Figure 5(a), we can see that the
“Prefix-All” approach outperforms the others in terms of
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Figure 5: Comparison among different approaches - lightly
unbalanced distribution

data migration. Although data are in normal distribution,
they are not highly skewed. With lightly unbalanced data
amount in different key ranges, the “Prefix-All” approach
can deal with it well. Based on the prefix of the keys, most
of the data do not need to be migrated after they have been
initially stored in drives.

Meanwhile, we can see that the “OneToAll” approach
has the largest data migration amount, because it does not
take advantage of this key distribution. It just migrate data
to drives one after another. The data migration of “Prefix-
Half” is obviously between that of "OneToAll” and "Prefix-
All”. Also, compared with “Prefix-Half”, the Prefix-Half-
2Drives” and “Prefix-Half-known” approaches can reduce
the data migration. The “Prefix-Half-2Drives” can delay and
even decrease the data migration because neighbor drives
can store some data without being migrated. With better
knowledge of key distribution, the “’Prefix-Half-known” can
lead to smaller data migration amount. When the standard
deviation increases, the data migration amount also becomes
larger for all approaches. This is because if data are more
unbalanced among key ranges, the data migration happens
more frequently.

For the percentage of active disks in figure 5(b), we can



find that the "OneToAll” approach has the smallest value.
This is because data are first stored in one drive, then
gradually migrated to other drives one by one. The "Prefix-
All” approach yields the highest average percentage of active
disks, because even at the early stage, a lot of disks receive
data in their key ranges. The “Prefix-Half”, “Prefix-Half-
2Drives” and Prefix-Half-known” approaches have average
percentage of active disks in the middle.

From the above discussion, we can find that if the data
are lightly unbalanced among key ranges, the “Prefix-All”
approach has small data migration, but large average per-
centage of active disks. There is a tradeoff between these
two design factors. Also, if we allow overlapped key ranges
in two different drives (which “Prefix-Half-2Drives” does),
the data migration amount can be reduced.

2) Highly Skewed Distribution: We generate key-value
pairs with keys in highly skewed distribution. In some
scenarios, there are a lot of data in certain key ranges,
while in some other ranges, there are little or even no data.
Depending on the key generation method, some key ranges
may never be used, whereas some other key ranges are very
popular and many applications generate high volume of key-
value pairs within those ranges.

We vary the number of key-value pairs among different
key ranges exponentially. (In other words, the number of
data among different key ranges change exponentially. We
use that to reflect this highly unbalanced case.) We generate
multiple traces with different standard deviations 1.5TB,
2.36TB, 3TB and 3.54TB. Compared with previous lightly
unbalanced key distribution, the data here are more skewed.

Figure 6 shows the results. Still, the ”OneToAll” approach
has the largest data migration amount. The “Prefix-Half”
approach has more data migration amount than “Prefex-All”
approach, but the difference is much smaller than that in
lightly unbalanced key distribution shown in Figure 5(a).
When data are highly skewed, both of these two approaches
have to migrate a large amount of data. When data becomes
more and more unbalanced, data migration amount in all
approaches are larger. Also, we can see that “Prefix-Half-
2Drives” and “Prefix-Half-known” approaches can reduce
the data migration amount.

For the average percentage of active disks shown in figure
6(b), we have the following observations. As data become
more unbalanced, the average percentage of active disks
decreases. This is because more drives have no data in
their predetermined key ranges when the key distribution
are more unbalanced. Also, we can see that the “Prefix-All”
approach has the largest average percentage of active disks
while "OneToAll” yields the smallest value.

For the highly skewed key distribution, we still can see
the tradeoff between data migration amount and average
percentage of active disks. Generally, the “Prefix-Half” is a
good choice. With limited extra data migration, it can reduce
the average percentage of active disks and provides a more
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Figure 6: Comparison among different approaches - highly
skewed distribution

flexible and scalable storage scheme.

3) Random Distribution: In addition to the above distri-
butions, we also generate keys following random distribu-
tion. Among all the key ranges, the data amount are totally
random. (The total key-value pairs are still kept the same as
previous distributions.)

This random distribution can reflect the random key gen-
eration method. For example, the random hashing function
is widely used to generate the keys. By simply hashing the
data, a key can be created. Due to the hashing function, a
predetermined key distribution cannot be guaranteed. Hence,
we use random distribution to reflect this scenario.

We conduct multiple experiments and select four sets of
results as shown in Figure 7. In Figure 7(a), we can see
that for data migration, the "OneToAll” approach is still the
worst, while the “Prefix-All” approach yields the best result.
The other three “Prefix-Half” related approaches are in the
middle. For the average percentage of active disks shown in
figure 7(b), it becomes opposite. The “OneToAll” approach
is the lowest, while “Prefix-All” approach has the highest
value. The “Prefix-Half-2Drives” and “Prefix-Half-known”
approaches can also have some improvement compared with
“Prefix-Half”.
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To sum up, we can generally see the tradeoff between data
migration amount and average percentage of active disks.
Also, with overlapped key ranges in two drives, the data
migration amount can be reduced. With better knowledge
of key distribution, the performance can be improved as
well. According to the practical factors, limitations and
environment, we can choose different approaches for use.

VII. CONCLUSION

As one of the popular NoSQL databases, key-value store
provides simple, flexible and efficient storage paradigm.
Recently, a new storage device called “Kinetic Drive” was
invented. Kinetic Drives can perform key-value operations
by themselves given the keys. This new innovation greatly
changes the storage stack.

In this paper, we investigate the data allocation of large-
scale key-value store system in a data center using Kinetic
Drives. We show the tradeoff among different design factors.
We design the key indexing schemes and propose approaches
for data allocation and migration among Kinetic Drives.
Performance evaluation shows the results of different ap-
proaches for various key distributions.
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